Breaking News

Three Lessons From Chatting About Strategy With ChatGPT

0 0

Read full article

When generative AI’s capacity for strategy creation is put to the test, it reveals where its strengths lie — and where humans still have the edge.

When Geoffrey Hinton, a pioneer of deep learning, quit Google recently, he made it clear that he is worried about the risks of artificial intelligence. He is not alone. Following the launch of ChatGPT-4, thousands of artificial intelligence experts signed a letter calling for a pause in the development of more-powerful AI systems.

On the other hand, excitement about the opportunities arising from large language models (LLMs) and their speed of adoption is unprecedented. Microsoft was quick to integrate the new technology into its Bing search engine, and the company’s founder, Bill Gates, stated that ChatGPT will “change our world” without necessarily putting jobs at risk.

Get Updates on Leading With AI and Data Get monthly insights on how artificial intelligence impacts your organization and what it means for your company and customers. sign up Please enter a valid email address Thank you for signing up Privacy Policy

While speculating about the future of AI is irresistible, the more practical question is how we can use it right now. Conversations about this are taking place in classrooms, newsrooms, and workplaces around the world.

As business strategists, we wanted to see what generative AI could add to our work. We explored this question through a series of experiments on different aspects of the strategy creation process. In each of the experiments, we put a realistic question of strategy to ChatGPT, followed by a lengthy back-and-forth to refine the initial responses. The intention was to understand how the tool can support ideation, experimentation, evaluation, and the building of stories — and where it falls down.

Three lessons emerged from these experiments.

1. Expect interesting input, not infallible recommendations.

In one of our experiments, we asked ChatGPT to suggest some disruptive business ideas for a large European transport provider. The chatbot suggested a personalized planning app, a ride-sharing service, hyperloop transportation, and a smart-luggage delivery service. Coincidently, the first three matched ideas from a recent workshop with a transport provider in another European country. The tool was also able to provide business models and cost estimates for these business ideas.

On the one hand, this is impressive. At the same time, it highlights that the tool seems unlikely to come up with ideas humans can’t, although it gets results faster and with less effort. Several other experiments confirmed this.

The tool seems unlikely to come up with ideas humans can’t, although it gets results faster and with less effort.

In another experiment, it also became obvious that humans are better at translating ideas into actions.

About the Authors Christian Stadler (@enduringsuccess) is a professor of strategic management at Warwick Business School at Warwick University and coauthor of several books, including Open Strategy: Mastering Disruption From Outside the C-Suite (MIT Press, 2021). Martin Reeves (@martinkreeves) is a senior managing director and partner at Boston Consulting Group and chair of the BCG Henderson Institute. He is coauthor of several books on strategy, including The Imagination Machine (Harvard Business Review Press, 2021) and Your Strategy Needs a Strategy (Harvard Business Review Press, 2015).

GPT’s reaction to this article:

This article provides an interesting perspective on the strengths and limitations of generative AI in the context of strategy creation. The authors conducted a series of experiments to explore how generative AI can support ideation, experimentation, evaluation, and storytelling in the strategy creation process. They found that while the tool can provide interesting input and suggestions, it is unlikely to come up with ideas that humans can’t, and humans are still better at translating ideas into actions. This highlights the potential of generative AI as a tool for augmenting human creativity and decision-making rather than replacing it.

Happy
Happy
0 %
Sad
Sad
0 %
Excited
Excited
0 %
Sleepy
Sleepy
0 %
Angry
Angry
0 %
Surprise
Surprise
0 %